Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biometals ; 35(1): 125-145, 2022 02.
Article in English | MEDLINE | ID: covidwho-1611429

ABSTRACT

The role of micronutrient deficiency in the pathogenesis of COVID-19 has been reviewed in the literature; however, the data are limited and conflicting. This study investigated the association between the status of essential metals, vitamins, and antioxidant enzyme activities in COVID-19 patients and disease severity. We recruited 155 patients, who were grouped into four classes based on the Adults guideline for the Management of Coronavirus Disease 2019 at King Faisal Specialist & Research Centre (KFSH&RC): asymptomatic (N = 16), mild (N = 49), moderate (N = 68), and severe (N = 22). We measured serum levels of copper (Cu), zinc (Zn), selenium (Se), vitamin D3, vitamin A, vitamin E, total antioxidant capacity, and superoxide dismutase (SOD). Among the patients, 30%, 25%, 37%, and 68% were deficient in Se (< 70.08 µg/L), Zn (< 0.693 µg/mL), vitamin A (< 0.343 µg/mL), and vitamin D3 (< 20.05 µg/L), respectively, and SOD activity was low. Among the patients, 28% had elevated Cu levels (> 1.401 µg/mL, KFSH&RC upper reference limit). Multiple regression analysis revealed an 18% decrease in Se levels in patients with severe symptoms, which increased to 30% after adjusting the model for inflammatory markers. Regardless of inflammation, Se was independently associated with COVID-19 severity. In contrast, a 50% increase in Cu levels was associated with disease severity only after adjusting for C-reactive protein, reflecting its possible inflammatory and pro-oxidant role in COVID-19 pathogenesis. We noted an imbalance in the ratio between Cu and Zn, with ~ 83% of patients having a Cu/Zn ratio > 1, which is an indicator of inflammation. Cu-to-Zn ratio increased to 45% in patients with mild symptoms and 34%-36% in patients with moderate symptoms compared to asymptomatic patients. These relationships were only obtained when one of the laboratory parameters (lymphocyte or monocyte) or inflammatory markers (neutrophil-to-lymphocyte ratio) was included in the regression model. These findings suggest that Cu/Zn might further exacerbate inflammation in COVID-19 patients and might be synergistically associated with disease severity. A 23% decrease in vitamin A was seen in patients with severe symptoms, which disappeared after adjusting for inflammatory markers. This finding may highlight the potential role of inflammation in mediating the relationship between COVID-19 severity and vitamin A levels. Despite our patients' low status of Zn, vitamin D3, and antioxidant enzyme (SOD), there is no evidence of their role in COVID-19 progression. Our findings reinforce that deficiency or excess of certain micronutrients plays a role in the pathogenesis of COVID-19. More studies are required to support our results.


Subject(s)
COVID-19/blood , Copper/blood , SARS-CoV-2/pathogenicity , Selenium/blood , Zinc/blood , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Count , Cholecalciferol/blood , Humans , Lymphocytes/immunology , Lymphocytes/virology , Middle Aged , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , Regression Analysis , SARS-CoV-2/growth & development , Severity of Illness Index , Superoxide Dismutase/blood , Vitamin A/blood , Vitamin E/blood
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(2): 159070, 2022 02.
Article in English | MEDLINE | ID: covidwho-1596012

ABSTRACT

N-[4-hydroxyphenyl]retinamide, commonly known as fenretinide, a synthetic retinoid with pleiotropic benefits for human health, is currently utilized in clinical trials for cancer, cystic fibrosis, and COVID-19. However, fenretinide reduces plasma vitamin A levels by interacting with retinol-binding protein 4 (RBP4), which often results in reversible night blindness in patients. Cell culture and in vitro studies show that fenretinide binds and inhibits the activity of ß-carotene oxygenase 1 (BCO1), the enzyme responsible for endogenous vitamin A formation. Whether fenretinide inhibits vitamin A synthesis in mammals, however, remains unknown. The goal of this study was to determine if the inhibition of BCO1 by fenretinide affects vitamin A formation in mice fed ß-carotene. Our results show that wild-type mice treated with fenretinide for ten days had a reduction in tissue vitamin A stores accompanied by a two-fold increase in ß-carotene in plasma (P < 0.01) and several tissues. These effects persisted in RBP4-deficient mice and were independent of changes in intestinal ß-carotene absorption, suggesting that fenretinide inhibits vitamin A synthesis in mice. Using Bco1-/- and Bco2-/- mice we also show that fenretinide regulates intestinal carotenoid and vitamin E uptake by activating vitamin A signaling during short-term vitamin A deficiency. This study provides a deeper understanding of the impact of fenretinide on vitamin A, carotenoid, and vitamin E homeostasis, which is crucial for the pharmacological utilization of this retinoid.


Subject(s)
Fenretinide/pharmacology , Vitamin A/pharmacology , beta Carotene/metabolism , Animals , Body Weight/drug effects , Dioxygenases/metabolism , Intestinal Absorption/drug effects , Intestines/drug effects , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Models, Biological , Retinol-Binding Proteins, Plasma/deficiency , Retinol-Binding Proteins, Plasma/metabolism , Vitamin A/blood , Vitamin A Deficiency/blood , Vitamin A Deficiency/pathology , Vitamin E/blood , Vitamin E/metabolism , beta Carotene/blood
3.
J Med Virol ; 93(4): 2350-2358, 2021 04.
Article in English | MEDLINE | ID: covidwho-1023296

ABSTRACT

To evaluate the maternal serum afamin and vitamin E levels in pregnant women with coronavirus disease 2019 (COVID-19) and to investigate their association with composite adverse perinatal outcomes. This prospective, case-control study consisted of 60 pregnant women with COVID-19 infection and 36 age-matched pregnant women without any defined risk factors. Demographic features, laboratory test results, afamin and vitamin E levels were compared between the groups. A receiver operating characteristic (ROC) curve was used to assess the relationship of afamin and vitamin E levels in predicting composite adverse perinatal outcomes. A correlation analysis was performed between afamin and C-reactive protein (CRP) levels in pregnant women with COVID-19. The obstetric complication rate was higher in the COVID-19 group (13.3% vs. 2.8%) (p = .01). Afamin levels were higher and vitamin E levels were lower in the COVID-19 group (p = .02 and p < .001, respectively). Vitamin E levels were lower in the COVID-19 group for the all trimesters (p < .001, p < .001, and p = .004, respectively). Afamin levels were higher in the COVID-19 group for the all trimesters without reaching statistical significance (p > .05). The values in the ROC curves with the best balance of sensitivity/specificity for afamin and vitamin E were 0.424 mg/l (70.6% sensitivity, 44.3% specificity) and 3.150 µg/ml (76.5% sensitivity, 58.2% specificity), respectively. A positive moderate statistically significant correlation was found between afamin and CRP levels (r = .264, p = .009). Higher afamin and lower vitamin E levels may support the elevated oxidative stress in the etiopathogenesis of COVID-19 and the relationship with composite adverse perinatal outcomes.


Subject(s)
COVID-19/blood , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/virology , Serum Albumin, Human/metabolism , Vitamin E/blood , Adult , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/virology , Carrier Proteins/blood , Case-Control Studies , Female , Glycoproteins/blood , Humans , Oxidative Stress/physiology , Pregnancy , Pregnancy Outcome , Prospective Studies , Sensitivity and Specificity , Turkey/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL